If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50t^2+1000t=20000
We move all terms to the left:
50t^2+1000t-(20000)=0
a = 50; b = 1000; c = -20000;
Δ = b2-4ac
Δ = 10002-4·50·(-20000)
Δ = 5000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5000000}=\sqrt{1000000*5}=\sqrt{1000000}*\sqrt{5}=1000\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1000)-1000\sqrt{5}}{2*50}=\frac{-1000-1000\sqrt{5}}{100} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1000)+1000\sqrt{5}}{2*50}=\frac{-1000+1000\sqrt{5}}{100} $
| -4(4u-5)+8u=4(u+7) | | -6/5u=-18 | | -39=4(w-3)-7w | | -10x=x+6 | | -2.2+x/6=-21.4 | | (4x)(-7x2)=0 | | 9y/8-2=11y/10 | | -4x-11=3(x+8) | | n+7=198-5n+5n+37 | | 3-x-4x=-12 | | 5k-6=7k-18 | | (x+2)/3=8/15 | | 171-n=11n+9 | | 0.27*x=0.4 | | 171-n=6n-20+5n-11 | | -(r-5)=-3 | | 31.8+89.8+x=180 | | 36+(18x)=63 | | 12x-16=7x-16 | | 15(62)=38(24x+3) | | 4(x-4)+3x=5x+2(x-8) | | 8.6^x=(0.2)^-x | | 0=2x^2-6x-(-7) | | (7.6+2x)(7.6+2x)=0 | | 4y-(2y+6/)=10 | | 0=2x^2-6x-5 | | 0=2x^2-6x-4 | | 15(62+6)=38(24x+3) | | 0=2x^2-6x-(-2) | | 0=2x^2-6x-9 | | 6+2x-3=18 | | 7-6x=4+5x |